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UNIT–IV 

RuntimeEnvironments,Stackallocationofspace,accesstoNonLocaldateonthestackHeapManagement code 

generation–Issues in design of code generation the target Language Address in 

thetargetcodeBasicblocksandFlowgraphs.ASimpleCodegeneration. 
 

UNIT 

4RUNTIMEENVIRONMEN

T 

By runtime, we mean a program in execution. Runtime environment is a state of the 

targetmachine, which may include software libraries, environment variables, etc., to provide services 

to theprocesses running in thesystem. 

 

StorageOrganization 

o  Whenthetargetprogramexecutesthenitrunsinitsownlogicaladdressspaceinwhichthevalueofea

ch program has alocation. 

o The logical address space is shared among the compiler, operating system and target 

machineformanagementand organization.Theoperatingsystemisused 

tomapthelogicaladdressintophysicaladdress which is usually spread throughout thememory. 

 

Therun-timerepresentationof anobjectprogramin thelogicaladdress 

spaceconsistsofdataandprogramareas as shown in Fig. 5.1 
 

 

Storageneeded for anameis determinedfrom its type. 

o Runtime storage comes into blocks, where a byte is used to show the smallest unit 

ofaddressable memory. Using the four bytes a machine word can form. Object of multibyte 

isstoredin consecutivebytes and gives thefirst byteaddress. 

o Run-timestoragecanbe subdividetohold thedifferentcomponentsofanexecuting program: 
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1. Generatedexecutable code 

2. Staticdataobjects 

3. Dynamicdata-object-heap 

4. Automaticdataobjects-stack 

 

 

 
Two areas, Stack and Heap, are at the opposite ends of the remainder of the address space. These 

areasare dynamic; their size can change as the program executes. Stack to support call/return policy 

forprocedures.Heaptostoredatathatcanoutliveacalltoaprocedure..Theheapisusedtomanageallocateand 

deallocatedata. 

StaticVersusDynamicStorageAllocation 

The layout and allocation of data to memory locations in the run-time environment are key issues 

instorage management. The two terms static and dynamic distinguish between compile time and run 

time,respectively.Wesay thatastorage-allocation decision is 

Static:-if it can be made by the compiler looking only at the text of the program, not at 

whattheprogram does when it executes. 

Dynamic:-if it can bedecidedonly while theprogram is running. 

 
Compilersusefollowingtwostrategiesfordynamicstorageallocation: 

Stack storage. Names local to a procedure are allocated space on a stack.stack supports the 

normalcall/returnpolicy for procedures. 

Heap storage. Data that may outlive the call to the procedure that created it is usually allocated on 

a"heap" of reusable storage.The heap is an area of virtual memory that allows objects or other 

dataelementstoobtain storagewhen they are createdandto returnthat storage when theyareinvalidated. 

Stackallocationofspace 

 
1 ActivationTrees 

2 ActivationRecords 

3 CallingSequences 

4 Variable-LengthData ontheStack 

 
Each time a procedure is called, space for its local variables is pushed onto a stack, and when 

theprocedureterminates, that spaceis popped off the stack. 

 

1 ActivationTrees 

Stackallocationisavalidallocationforproceduressinceprocedurecallsarenested 

 
Example:quicksort algorithm 
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Themainfunctionhasthreetasks.ItcallsreadArray,setsthesentinels,andthencallsquicksortontheentiredat

aarray. 

Procedure activations are nested in time. If an activation of procedure p calls procedure q, 

thenthatactivation ofq must end before theactivation of p can end. 

 

 

 

 

Representtheactivationsofproceduresduringthe runningofanentireprogrambya tree,calledan 

activation tree. Each node corresponds to one activation, and the root is the activation of the 

"main"procedure that initiates execution of the program. At a node for an activation of procedure p, 

thechildrencorrespond to activations of theprocedurescalled by this activation of p. 
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2 ActivationRecords 

a. Procedure calls and returns are usually managed by a run-time stack called the 
controlstack. 

b. Eachliveactivationhasanactivationrecord(sometimescalledaframe) 

c. Theroot ofactivation treeis at thebottomof thestack 

d. Thecurrentexecution pathspecifies thecontent ofthestackwith thelast 

e. Activationhasrecordinthetopofthestack. 
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Figure7.5:Ageneralactivationrecord 

An activation record is used to store information about the status of the machine, such as the 

valueof the program counter and machine registers, when a procedure call occurs. When control returns 

fromthe call, the activation of the calling procedure can be restarted after restoring the values of 

relevantregisters and setting the program counter to the point immediately after the call. Data objects 

whoselifetimesarecontainedinthatofanactivationcanbeallocatedonthestackalongwithotherinformationass

ociated with the activation. 

 

 
Anactivationrecordcontainsallthenecessaryinformationrequiredtocallaprocedure.Anactivationrecordmay 

contain the following units(depending upon thesourcelanguageused). 
 

Temporaries Storestemporaryandintermediatevaluesofanexpression. 

LocalData Storeslocaldataofthecalledprocedure. 

MachineStatus StoresmachinestatussuchasRegisters,ProgramCounteretc.,beforetheproce

dureis called. 

Control Link Storestheaddressof activationrecordofthecallerprocedure. 

AccessLink Storestheinformationof datawhichisoutsidethe local scope. 

ActualParameters Storesactualparameters,i.e.,parameterswhich 

areusedtosendinputtothecalledprocedure. 
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ReturnValue Storesreturnvalues. 

 

 

 

 

3 CallingSequences 

Designingcallingsequencesandthelayoutofactivationrecords,thefollowing 

 
1. Valuescommunicatedbetweencallerandcalleearegenerallyplacedatthe 

beginningofcallee’sactivationrecord 

2. Fixed-length items: are generally placed at the middle. such items typically include the 

controllink,the access link, and the machine status fields. 

3. Itemswhosesizemay notbe knownearlyenough:areplaced atthe 

endofactivationrecord4.Wemustlocatethetop-of-stackpointerjudiciously: 

acommonapproachistohave 

itpointtothe end offixed lengthfields in theactivation record. 
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A register topsp points to the end of the machine-status field in the current top activation 

record.This position within the callee's activation record is known to the caller, so the caller can be 

maderesponsible for settingtopsp before control is passed to the callee.The calling sequence 

anditsdivisionbetween caller and calleeis as follows: 

1. Thecallerevaluatestheactualparameters. 

The caller stores a return address and the old value of topsp into the callee's activation 

record.The caller then increments topsp to the position shown in Fig. 7.7. That is, topsp is moved past 

thecaller'slocal dataand temporariesand thecallee'sparameters and status fields. 

Thecalleesavestheregistervaluesandotherstatusinformation.Thec

alleeinitializes its local dataand begins execution. 

Asuitable,corresponding returnsequenceis: 

1. Thecalleeplaces thereturnvalue nexttothe parameters, asin Fig.7.5. 

2. Using information in the machine-status field, the callee restores topsp and other 

registers,andthen branchestothe returnaddress thatthecaller placedin thestatusfield. 

 

3. Althoughtopsp hasbeen decremented,thecallerknows wherethereturnvalue is,relativeto 



 
 

  Department of CSE                                                                                                                                   Page 8 of 27  

thecurrentvalueoftopsp;thecaller thereforemayusethatvalue. 

4. Variable-LengthDataontheStack 

The run-time memory-management system must deal frequently with the allocation of space 

forobjects the sizes of which are not known at compile time, but which are local to a procedure and 

thusmaybeallocatedon the stack. 

it ispossible to allocate objects, arrays, or other structures of unknown size on the stack. 

Thereason to prefer placingobjects on the stack if possible is that we avoid the expense of 

garbagecollecting their space. Note that the stack can be used only for an object if it is local to a 

procedure andbecomesinaccessible when the procedure returns. 

A common strategy for allocating variable-length arrays (i.e., arrays whose size depends on 

thevalue of one or more parameters of the called procedure) is shown in Fig. 7.8. The same scheme 

worksfor objects of any type if they are local to the procedure called and have a size that depends on 

theparametersofthecall. 
 

 

Also shown in Fig. 7.8 is the activation record for a procedure q, called by p. The activation record for 

qbegins after the arrays of p, and any variable-length arrays of q are located beyond that . Access 

tothedataon thestack is through two pointers, topand topsp. 



 
 

  Department of CSE                                                                                                                                   Page 9 of 27  

 

AccesstoNonLocaldataonthestack 

1DataAccessWithoutNestedProcedures2Is

sues WithNested Procedures 

3ALanguageWithNestedProcedureDeclarations4N

esting Depth 

5 AccessLinks 

6 ManipulatingAccessLinks 

7 AccessLinksforProcedureParameters8

Displays 

Consider how procedures access their data. Especially im-portant is the mechanism for 

findingdataused within aprocedurep but that does not belong top 
 

1DataAccessWithoutNestedProcedures 

 

Namesareeither localto theprocedureinquestion oraredeclaredglobally. 

 

1. For global names the address is known statically at compile time providing there is only 

onesourcefile.Ifmultiplesourcefiles,thelinker 

knows.Ineithercasenoreferencetotheactivationrecordis needed; theaddresses areknow priorto 

execution. 

2. For names local to the current procedure, the address needed is in the AR at a known-at-

compile-timeconstantoffsetfromthesp.Inthecaseofvariablesize arrays,theconstantoffsetrefersto 

apointer to theactual storage. 

 
2IssuesWithNestedProcedures 

Access becomes far more complicated when a language allows procedure dec-larations to 

benested .The reason is that knowing at compile time thatthe declaration of p is immediately 

nestedwithinq doesnottellustherelativepositionsoftheiractivationrecordsatruntime.Infact,sinceeitherp orq 

orbothmayberecursive,theremaybeseveralactivationrecordsofp and/orqonthestack. 

Finding the declaration that applies to a nonlocal name x in a nested pro-cedure p is a 

staticdecision; it can be done by an extension of the static-scope rule for blocks. Suppose x is declared in 

theenclosingprocedure q. Findingtherelevantactivationof q fromanactivationof p isadynamicdecision; it 

re-quires additional run-time information about activations. One possible solution is to useaccesslinks. 

3. ALanguageWithNestedProcedureDeclarations 

Invariouslanguageswith nested procedures, one of themostinfluential is ML. 
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+1 

ML is a functional language, meaning that variables, once declared and initialized, are 

notchanged. There are only a few exceptions, such as the array, whose elements can be changed by 

specialfunctioncalls. 

• Variablesaredefined,andhavetheirunchangeablevaluesinitialized, 

val (name)=(expression) 

• Functionsaredefinedusingthesyntax: 

fun(name)((arguments))= (body) 

• Forfunction bodies,uselet-statementsof the form: 

let (list of definitions) in (statements) endThe definitions are normally v a l or fun 

statements.Thescopeofeachsuchdefinitionconsistsofallfollowingdefinitions,uptothein,andallthestatement

s up to the end. Most importantly, function definitions can be nested. For example, the body ofa 

function p can contain a let-statement that includes the definition of another (nested) function 

q.Similarly, q can have function definitions within its own body, leading to arbitrarily deep nesting 

offunction 

4. NestingDepth 

Nesting depth is 1 to procedures that are not nested within any other procedure. For example, 

allC functions are at nesting depth 1. However, if a procedure p is defined immediately within a 

procedureat nesting depthi, then give p the nesting depthi 
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5. AccessLinks 

A direct implementation of the normal static scope rule for nested functions is obtained 

byadding a pointer called the access link to each activation record. If procedure p is nested 

immediatelywithin procedure q in the source code, then the access link in any activation of p points to 

the mostrecentactivationof q.Note thatthe nestingdepthofqmustbe exactlyonelessthan thenestingdepthof 

p. Access links form a chain from the activation record at the top of the stack to a sequence 

ofactivationsat progressively lower nesting depths. 

Figure 7.11 shows a sequence of stacks that might result from execution of the function sort 

ofFig.7.10.InFig.7.11(a),weseethesituationaftersorthascalledreadArray toloadinputintothearray a and 

then called quicksort(l, 9) to sort the array. The access link from quicksort(l, 9) points to theactivation 

record for sort, not because sort called quicksort but because sort is the most closely 

nestedfunctionsurrounding quicksortin theprogram. 
 

 

seearecursivecalltoquicksort(l,3),  

followedbyacalltopartition,whichcallsexchange.Noticethatquicksort(l, 3)'saccess link pointstosort, 

forthe same reasonthatquicksort(l, 9)'s does. 

6. ManipulatingAccessLinks 

Thehardercaseiswhenthecallistoaprocedure-

parameter;inthatcase,theparticularprocedurebeingcalledisnotknownuntilruntime,andthenestingdepthofth

ecalledproceduremay 
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differindifferentexecutionsof  the  call.  consider  situation  when  a  procedure q callsprocedurep, 

explicitly. Therearethreecases: 

1. Procedure p isatahighernestingdepththan q. Thenpmustbedefinedimmediatelywithin q, 

orthecallby q wouldnotbeatapositionthatiswithinthescopeoftheprocedurename p. Thus,thenestingdepthof 

p isexactlyonegreaterthanthatof q, andtheaccesslinkfrom p must lead to q. It is a simple matter for the 

calling sequence to include a step that places in theaccesslink forp apointer to theactivation recordof q. 

2. The call is recursive, that is, p = q.Then the access link for the new activation record is 

thesameas that of theactivation record below it. 

3. Thenestingdepthnpofpislessthanthenestingdepthnqofq.Inorderforthecallwithinqtobe inthe 

scopeof name p, procedure qmustbe nestedwithin some procedure r,while pisaprocedure defined 

immediately within r. The top activation record for r can therefore be found byfollowing the chain of 

access links, starting in the activation record for q, for nq — np + 1 hops. Then,theaccess link forp must 

go to this activation ofr. 

7. AccessLinksforProcedureParameters 

Whenaprocedure p ispassedtoanotherprocedure q asaparameter,and q thencallsitsparameter (and 

therefore calls p in this activation of q), it is possible that q does not know the context inwhich p appears 

in the program. If so, it is impossible for q to know how to set the access link for p. Thesolution to this 

is, when procedures are used as parameters, the caller needs to pass, along with the nameof the 

procedure-parameter, the proper access link for that parameter. The caller always knows the link,since if 

p is passed by procedure r as an actual parameter, then p must be a name accessible to r, 

andtherefore,rcandeterminetheaccesslinkforp exactlyasifp werebeingcalledbyrdirectly. 
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8. Displays 

 

 
One problem with the access-link approach to nonlocal data is that if the nesting depth gets large, 

wemayhavetofollowlongchainsoflinkstoreachthedataweneed.Amoreefficientimplementationuses an 

auxiliary array d, called the display, which consists of one pointer for each nesting depth. Wearrange 

that, at all times, d[i] is a pointer to the highest activation record on the stack for any procedureatnesting 

depth i. Examples of adisplay areshown in Fig. 7.14. 

 
 

 

Inordertomaintainthedisplaycorrectly,weneedtosavepreviousvaluesofdisplayentriesinnewactivati

on records. 
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HeapManagement 
The heap is the portion of the store that is used for data that lives indefinitely, or until 

theprogramexplicitly deletes it. 

1 TheMemoryManager 

2 TheMemoryHierarchyofaComputer3L

ocality in Programs 

4 ReducingFragmentation 

5 ManualDeallocationRequests 

1 TheMemoryManager 

It performstwobasicfunctions: 

• Allocation. Whenaprogramrequestsmemoryforavariableorobject,3 thememorymanagerproduces a 

chunk of contiguous heap memory of the requested size. If possible, it satisfies an allocationrequest 

using free space in the heap; if no chunk of the needed size is available, it seeks to increase 

theheapstoragespacebygettingconsecutivebytesofvirtualmemoryfromtheoperatingsystem.Ifspaceisexhau

sted, thememorymanager passesthat informationback to theapplication program. 

• Deallocation. The memory manager returns deallocated space to the pool of free space, so it can 

reusethe space to satisfy other allocation requests. Memory managers typically do not return memory to 

theoperatingsys-tem, even if theprogram's heap usagedrops. 

Thus,thememorymanagermustbepreparedtoservice,inanyorder,allo-cationanddeallocation 

requests of any size, ranging fromone byte to as large as the program's entire addressspace. 

Herearetheproperties wedesireofmemory managers: 

• SpaceEfficiency.Amemorymanagershouldminimizethetotalheapspaceneededbyaprogram.Larger 

programs to run in afixed virtualaddress space.. 

• Program Efficiency. A memory manager should make good use of the memory subsystem to 

allowprogramsto runfaster. 

• Low Overhead. Because memory allocations and deallocations are fre-quent operations in 

manyprograms, it is important that these operations be as efficient as possible. That is, we wish to 

minimizetheoverhead 

2. TheMemoryHierarchyofaComputer 

The efficiency of a program is determined not just by the number of instructions executed, 

butalso by how long it takes to execute each of these instructions. The time taken to execute an 

instructioncanvarysignificantly,sincethetimetakentoaccessdifferentpartsofmemorycanvaryfrom 



 
 

  Department of CSE                                                                                                                                   Page 15 of 27  

nanosecondstomilliseconds.Data-intensiveprogramscanthereforebenefitsignificantlyfromoptimizationsthat 

makegood useof thememorysubsystem. 

 

 
 

 

3. LocalityinPrograms 

Most programs exhibit a high degree of locality;that is, they spend most of their time executinga 

relatively small fraction of the code and touching only a small fraction of the data. We say thataprogram 

hastemporal locality if the memory locations it accesses are likely to be accessed again withina short 

period of time. We say that a program has spatial locality if memory locations close to 

thelocationaccessed arelikely also to beaccessed within a short period oftime. 

Programs spend 90% of their time executing 10% of the code. Programs often contain 

manyinstructions that are never executed. Programs built with components and libraries use only a 

smallfractionofthe provided functionality. 

The typicalprogramspendsmostofits timeexecutinginnermostloopsandtight recursivecycles in a 

program. By placing the most common instructions and data in the fast-but-small storage,while leaving 

the rest in the slow-but-large storage. Average memory-access time of a program can 

beloweredsignificantly. 
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4. ReducingFragmentation 
 
 

 
Tobeginwiththewhole heapisasinglechunkofsize 

500KbytesAfterafewallocations anddeallocations,thereareholes 

Intheabove picture,it isnot possibletoallocate100Kor 150Keventhoughtotal freememoryis150K 

With each deallocation request, the freed chunks of memory are added back to the pool of 

freespace.We coalesce contiguous holes into larger holes, as the holes can only get smaller 

otherwise.Ifwe are not careful, the memory may end up getting fragmented, consisting of large numbers 

of small,noncontiguous holes. It is then possible that no hole is large enough to satisfy a future request, 

eventhoughtheremay besufficient aggregate freespace. 

Best -FitandNext- FitObject Placement 

We reduce fragmentation by controlling how the memory manager places new objects in 

theheap. It has been found empirically that a good strategy for minimizing fragmentation for real 

lifeprogramsistoallocatetherequestedmemoryinthesmallestavailableholethatislargeenough.This best-fit 

algorithmtendstosparethelargeholestosatisfysubsequent,largerrequests.Analternative, called first-fit, 

where an object is placed in the first (lowest-address) hole in which it fits,takesless 

timetoplaceobjects,but has beenfound inferiortobest-fit in overallperformance. 

To implement best-fit placement more efficiently, we can separate free space into bins, according 

totheirsizes.Binning makes it easy to find thebest-fit chunk. 

Man ag in g and  CoalescingFreeSpace 

When anobject is deallocated manually, the memory manager must make its chunk free, so itcan 

be allocated again. In some circumstances, it may also be possible to combine (coalesce) that chunkwith 

adjacent chunks of the heap, to form a larger chunk. There is an advantage to doing so, since wecan 

always use a large chunk to do the work of small chunks of equal total size, but many small 

chunkscannothold onelargeobject, as thecombinedchunk could. 

Automatic garbage collection can eliminate fragmentation altogether if it moves all the 

allocatedobjectsto contiguous storage. 
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5. ManualDeallocationRequests 

Inmanualmemorymanagement,wheretheprogrammermustexplicitlyarrangeforthedeallocation of 

data, as in C and C + + . Ideally, any storage that will no longer be accessed should bedeleted. 

ProblemswithManualDeallocation 

1. Memoryleaks‰ 

Failingtodeletedatathatcannotbereferenced‰Impor

tantinlongrunning ornonstopprograms „ 

2. Danglingpointerdereferencing‰R

eferencingdeleteddata„ 

Bothareseriousand hardtodebug 

GarbageCollection„ 

1. Reclamationofchunksof storageholding objectsthat canno longerbeaccessedby aprogram„ 

2. GCshouldbeableto determinetypesofobjects‰ 

Then,sizeandpointerfieldsofobjects canbedeterminedbythe GC‰ 

Languagesinwhich typesofobjects canbedeterminedatcompiletimeorrun-time aretype 

safe„ 

Javaistypesafe„ 

Cand C++arenottypesafebecausethey permittypecasting,which 

createsnewpointers 

„ 

Thus,anymemorylocationcanbe(theoretically)accessedatanytimeandhencecannot

beconsidered inaccessible 
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CodeGeneration 
 

Ittakesasinputtheintermediaterepresentation(IR)producedbythe front endofthecompiler,along 

with relevant symbol table information, and produces as output a semantically equivalent 

targetprogram 
 

 
Themostimportantcriterionforacodegenerator is thatit producecorrectcode. 

 

Thefollowingissuearisesduringthecodegenerationphase: 

 
1InputtotheCodeGenerator2T

heTarget Program 

3 InstructionSelection 

4 RegisterAllocation

5.EvaluationOrder 

 

Inputtocodegenerator 

 

Theinputtocodegeneratoristheintermediatecodegeneratedbythefrontend,alongwithinformation in the 

symbol table that determines the run-time addresses of the data-objects denotedby the names in the 

intermediate representation. Intermediate codes may be represented mostly inquadruples, triples, 
indirect triples, Postfix notation, syntax trees, DAG’s, etc. The code generationphase just proceeds 

on an assumption that the input are free from all of syntactic and state semanticerrors, the necessary 

type checking has taken place and the type-conversion operators have 

beeninsertedwherevernecessary 
 

Targetprogram 

Thetargetprogramistheoutputofthecodegenerator.Theoutputmaybeabsolutemachinelanguage

,relocatablemachinelanguage,assemblylanguage. 

  Absolutemachinelanguageas 

outputhasadvantagesthatitcanbeplacedinafixedmemorylocationandcanbeimmediatelyex

ecuted. 

  Relocatable machine language as an output allows subprograms and subroutines 
tobe compiled separately. Relocatable object modules can be linked together and 

loadedbylinkingloader.Butthereisaddedexpenseoflinkingandloading. 

  Assembly language as output makes the code generation easier. We can 

generatesymbolic instructions and use macro-facilities of assembler in generating code. 

And weneedanadditionalassemblystepafter codegeneration. 
 

. 

 

Instructionselection 



 
 

  Department of CSE                                                                                                                                   Page 19 of 27  

Selectingthebestinstructionswillimprovetheefficiencyoftheprogram.Itincludestheinstructionsthat 

should be complete and uniform. Instruction speeds and machine idioms also plays a major 

rolewhen efficiency is considered. But if we do not care about the efficiency of the target program 

theninstructionselection is straight-forward. 

Forexample,three-addressstatements wouldbetranslated intothelattercodesequenceasshownbelow: 
 

Herethe fourth statementis redundantas thevalue of theP isloaded againin thatstatementthat justhasbeen 

stored in the previous statement. It leads to an inefficient code sequence. A given 

intermediaterepresentation can be translated into many code sequences, with significant cost differences 

between thedifferent implementations. A prior knowledge of instruction cost is needed in order to 

design goodsequences,butaccuratecost information is difficultto predict. 

 

Registerallocationissues 

 

Useofregistersmakethe computationsfasterin 

comparisontothatofmemory,soefficientutilizationofregisters is important.Theuseofregisters 

aresubdivided into two subproblems: 

1. During Register allocation – we select only those set of variables that will reside in 

theregistersat each point inthe program. 

2. Duringasubsequent Registerassignment phase,thespecificregisteris 

pickedtoaccessthevariable. 

As the number of variables increases, the optimal assignment of registers to variables 

becomesdifficult. Mathematically, this problem becomes NP-complete. Certain machine 

requires registerpairsconsist of an evenand next odd-numberedregister. For example 

Ma, b  

Thesetypesofmultiplicativeinstructioninvolveregisterpairswherethemultiplicandisan 

evenregisterand b, themultiplier is theodd register of theeven/odd register pair. 

Evaluationorder – 

The code generator decides the order in which the instruction will be executed. The order 

ofcomputationsaffectsthe efficiencyofthetarget code.Amongmanycomputationalorders,some 

willrequire only fewer registers to hold the intermediate results. However, picking the best order in 

thegeneralcaseis a difficultNP-complete problem. 

 
 

Approachestocodegenerationissues: 

Codegeneratormustalwaysgeneratethe correctcode.Itis

 essentialbecauseofthenumberofsp

ecialcasesthatacode generatormightface.Someofthe designgoalsofcodegenerator are: 

P:=Q+RS:=

P+TMOV 

Q, R0ADD 

R, R0MOV 

R0, PMOV 

P, 

R0ADDT,R

0 

MOVR0, S 
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 Correct 

 Easilymaintainable 

 Testable 

 Efficient 

 

 

ThetargetLanguage 

1ASimpleTargetMachineModel2P

rogramand Instruction Costs 

 

ASimpleTargetMachineModel 

 
opsource,destination 

 

Where,opisusedasanop-codeandsourceanddestinationareusedasadatafield. 

 
o It has the following op-

codes:ADD(addsourcetodestinat

ion) 

SUB (subtract source from 

destination)MOV(movesource 

todestination) 

o Thesourceanddestinationof 

aninstructioncanbespecifiedbythecombinationofregistersand memorylocationwith 

addressmodes. 

 

MODE FORM ADDRESS EXAMPLE ADDED 
 COST  

Absolute M M AddR0, R1 1 

Register R R Addtemp, R1 0 

indexed 
c(R) C+contents(R) ADD100(R2),R1 1 

indirectregister 
*R contents(R) ADD*100 0 

indirectindexed *c(R) 
contents(c+
contents(R)) 

(R2),R1 1 

literal #c c ADD#3,R1 1 

 
 

o Here,cost1meansthatitoccupiesonlyonewordofmemory. 

o Eachinstructionhas acost of1plusaddedcostsforthesourceanddestination. 

o Instruction cost=1 +costisusedfor sourceanddestinationmode. 
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2 ProgramandInstructionCosts 

Cost of an instruction to be one plus the costs associated with the addressing modes of 

theoperands . This cost corresponds to the length in words of the instruction. Addressing modes 

involvingregisters have zero additional cost, while those involving a memory location or constant in 

them have anadditionalcost of one, becausesuch operands havetobe stored in thewords following 

theinstruction. 

Examples: 

• TheinstructionLDRO,RlcopiesthecontentsofregisterRlintoregisterRO.Thisinstructionhasacost  of 

onebecauseno  additionalmemory words arerequired. 

 

• The instruction LD RO, Mloads the contentsof memory location Minto register RO.T h e 

costistwosincethe address ofmemory locationM is in theword followingtheinstruction. 

 
• The instruction LDR l , *100(R2)loads into register Rl the value given by contents(contents(100 

+contents(K2))).Thecost isthreebecause the constant 100 is stored in the word following theinstruction. 

 
Example: 

1. Moveregistertomemory R0→M 
MOVR0, M 

cost=1+1+1 (sinceaddressofmemorylocationM isinword followingtheinstruction) 

 
2. Indirectindexedmode:MOV*4(R0),M 

cost = 1+1+1(since one word for memory location M, one 
wordresultof*4(R0) and oneforinstruction) 

3. LiteralMode: 

MOV#1, R0 
cost=1+1+1 =3(oneword forconstant1 and oneforinstruction) 

 

Addressinthetargetcode 

Theinformation whichrequired duringanexecutionofaprocedureis keptin ablock 
ofstoragecalledanactivationrecord. Theactivationrecordincludes storage fornameslocal totheprocedure. 
Wecandescribeaddressinthetargetcodeusingthefollowingways: 

1. Staticallocation 

2. Stackallocation 

 
Instaticallocation,theposition ofanactivationrecordisfixedinmemoryat compiletime. 

. 
Inthestackallocation,foreachexecutionofaprocedureanewactivationrecord ispushedontothestack. 
Whenthe activation ends then therecord ispopped. 

 

 

 
For the run-time allocation and deallocation of activation records the following three-
addressstatementsareassociated: 
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1. Call 

2. Return 

3. Halt 

4. Action,aplaceholderforotherstatements 

 
Assumethattherun-timememoryisdividedintoareasfor: 

 
1. Code 

2. Staticdata 

3. Stack 

 
Staticallocation: 

 
1. Implementationofcallstatement: 

 

Thefollowingcodeisneeded toimplement staticallocation: 

MOV#here +20, callee.static_area /*itsavesreturnaddress*/</p> 

GOTOcallee.code_area /*Ittransferscontroltothetargetcodeforthecalledprocedure*/ 

 

Where, 

 

callee.static_areashowstheaddressoftheactivationrecord. 

 

callee.code_areashows theaddressofthefirstinstructionforcalledprocedure. 

 

#here+20literalareusedtoreturnaddressofthe instructionfollowingGOTO. 

 
2. Implementationofreturnstatement: 

Thefollowingcodeisneededtoimplementreturn 

fromprocedurecallee:GOTO* callee.static_area 

Itisusedtotransferthecontroltotheaddressthatissavedatthebeginningoftheactivationrecord. 
 

3. Implementationofactionstatement: 

 

TheACTIONinstructionisusedtoimplementactionstatement. 

 
4. Implementationofhaltstatement: 

 

TheHALTstatementis thefinalinstruction thatisused toreturnthe controltotheoperatingsystem. 
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Stackallocation 

 

Usingtherelativeaddress,staticallocationcanbecomestackallocationfor 

storageinactivationrecords. 

 

Instackallocation,registerisusedtostorethepositionofactivationrecord 

sowordsinactivationrecords canbeaccessed asoffsets fromthevalue inthis register. 

 

Thefollowingcodeis neededtoimplementstackallocation: 

 
1. Initializationofstack: 

MOV#stackstart , SP /*initializes 

stack*/HALT  /*terminateexecution*/ 

 

 

 
2. ImplementationofCallstatement: 

ADD #caller.recordsize, SP/* increment stack pointer 

*/MOV#here+16, *SP

 /*Savereturnaddress*/G

OTOcallee.code_area 

Where, 

 

caller.recordsizeis thesizeoftheactivationrecord 

 

#here+ 16is theaddressof theinstruction followingtheGOTO 

 
3. ImplementationofReturnstatement: 

GOTO*0(SP)/*returntothecaller*/ 

SUB#caller.recordsize,SP /*decrementSP andrestoreto previous value*/ 

 

 

 
BasicblocksandFlowgraphs 

A graph representation of three-address statements, called a flow graph, is useful 

forunderstanding code-generation algorithms, even if the graph is not explicitly constructed 

by acode-generation algorithm. Nodes in the flow graph represent computations, and the 

edgesrepresent the flow of control. Flow graph of a program can be used as a vehicle to 

collectinformation about the intermediate program. Some register-assignment algorithms use 

flowgraphsto find theinnerloopswhere aprogram is expectedto spend most ofits time. 

 

Basicblockcontains asequenceof statement.The flowofcontrol entersatthe 

beginningofthestatementand leaveattheend without anyhalt (except maybethe last instructionofthe 

block). 

 

Thefollowing sequence of threeaddressstatements forms abasicblock: 
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1.t1:=x * x 

2.   t2:= x * 

y3.t3:= 2 * 

t24.t4:=t1+t3 

5.   t5:= y * 

y6.t6:=t4+t5 

 
Basicblockconstruction: 

 

Algorithm:Partitionintobasicblocks 

 

Input:Itcontainsthesequenceofthree addressstatements 

 

Output:itcontains alistofbasic blockswith eachthreeaddressstatementin exactlyoneblock 

 

Method:Firstidentifytheleaderinthecode.The rules forfindingleaders areasfollows: 

 

o Thefirst statementis aleader. 

o StatementLis aleader if thereisan conditionalorunconditionalgoto statementlike: if. ........... goto 

L orgoto L 
o InstructionLis aleader ifit immediatelyfollowsagotoor conditionalgoto statementlike:ifgoto 

Bor goto B 

 

For each leader, its basic block consists of the leader and all statement up to. It doesn't include the 

nextleaderor end ofthe program. 

 

Considerthefollowingsourcecodefordot product oftwo vectorsaand boflength 10: 

 
 

begin 

prod 

:=0;i:=1; 

dobegin 

prod :=prod+ a[i] * 

b[i];i:=i+1; 

end 

while i <= 

10end 

Thethree addresscodefor theabovesourceprogramis givenbelow: 

 

B1 

 
(1)prod:=0(

2)i :=1 
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B2 
 

(3) t1 := 4* 

i(4)t2:=a[t1] 

(5) t3 := 4* 

i(6)t4:=b[t3] 

(7)t5 :=t2*t4 

(8) t6:=prod+t5 

(9) prod := 

t6(10) t7:=i+1 

(11) i :=t7 

(12) ifi<=10 goto(3) 

 
Basic block B1 contains the statement (1) to 
(2)BasicblockB2containsthestatement (3)to(12) 

 

FlowGraph 
 

Flowgraphisadirected graph.Itcontainsthe flowofcontrolinformationforthesetofbasic block. 

 

Acontrolflowgraphisusedto depictthathowtheprogramcontrol isbeingparsedamongtheblocks.Itisuseful in 

theloop optimization.Flow graphfor the vectordot product isgiven as follows: 

 

1. BlockB1 isthe initialnode. BlockB2 immediatelyfollows B1, sofrom B2to B1thereisanedge. 

 

 
 

2. Thetarget ofjump fromlast statementofB1is thefirst statementB2, sofrom B1to B2thereisan 

edge. 
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ASimpleCodegeneration. 

Codegeneratoris usedtoproducethetargetcodeforthree-addressstatements. 

Itusesregisterstostorethe operands of thethreeaddress statement. 

Considerthethree addressstatementx:=y+z.Itcanhavethe followingsequenceof codes: 
 

MOVx, R0 

ADDy, R0 

 

RegisterandAddressDescriptors: 

o Aregisterdescriptorcontainsthetrackof whatiscurrentlyineachregister. 

Theregisterdescriptorsshow that allthe registers areinitially empty. 

o Anaddressdescriptorisusedtostorethe locationwherecurrent valueofthename canbefoundat 

runtime. 

 

Acode-generationalgorithm: 

 

The algorithm takes a sequence of three-address statements as input. For each three address statement 

oftheform a:= b opcperform thevarious actions. Theseareas follows: 

 
1. Invokeafunction getregtofind outthe locationLwherethe result ofcomputationb opc 

shouldbestored. 

2. Consulttheaddress descriptionforytodeterminey'.Ifthevalueof ycurrently inmemory andregister 

both then prefer the register y' . If the value of y is not already in L then generate 

theinstructionMOV y' , Lto placeacopy ofyin L. 

3. Generate the instruction OP z' , L where z' is used to show the current location of z. if z is 

inboth then prefer a register to a memory location. Update the address descriptor of x to 

indicatethat x is in location L. If x is in L then update its descriptor and remove x from all 

otherdescriptor. 

4. If the current value of y or z have no next uses or not live on exit from the block or in 

registerthenaltertheregister descriptortoindicatethat afterexecutionofx 

:=yopzthoseregisterwillnolongercontain y orz. 

 

GeneratingCodeforAssignment Statements: 

 

Theassignmentstatement d:=(a-b)+(a-c)+(a-c)canbetranslatedinto the following 

sequenceofthreeaddresscode: 

 

 

 

 
 

t:=a-b 

u:= a-

cv:=t+u 
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d:=v+u 

 
Codesequenceforthe exampleis as follows: 

 

Statement CodeGenerated Registerdescriptor

Register empty 

Addressdescriptor 

t:=a-b MOVa,R0

SUBb, R0 

R0contains t t in R0 

u:= a-c MOVa,R1

SUBc, R1 

R0 contains 

tR1containsu 

t in 

R0uin

R1 

v:= t +u ADDR1, R0 R0 contains 

vR1containsu 

u in 

R1vin

R1 

d:= v +u ADD R1, 

R0MOVR0, 

d 

R0contains d d in R0 

dinR0and

memory 
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