

 Department of CSE Page 1 of 27

UNIT–IV

RuntimeEnvironments,Stackallocationofspace,accesstoNonLocaldateonthestackHeapManagement code

generation–Issues in design of code generation the target Language Address in

thetargetcodeBasicblocksandFlowgraphs.ASimpleCodegeneration.

UNIT

4RUNTIMEENVIRONMEN

T

By runtime, we mean a program in execution. Runtime environment is a state of the

targetmachine, which may include software libraries, environment variables, etc., to provide services

to theprocesses running in thesystem.

StorageOrganization

o Whenthetargetprogramexecutesthenitrunsinitsownlogicaladdressspaceinwhichthevalueofea

ch program has alocation.

o The logical address space is shared among the compiler, operating system and target

machineformanagementand organization.Theoperatingsystemisused

tomapthelogicaladdressintophysicaladdress which is usually spread throughout thememory.

Therun-timerepresentationof anobjectprogramin thelogicaladdress

spaceconsistsofdataandprogramareas as shown in Fig. 5.1

Storageneeded for anameis determinedfrom its type.

o Runtime storage comes into blocks, where a byte is used to show the smallest unit

ofaddressable memory. Using the four bytes a machine word can form. Object of multibyte

isstoredin consecutivebytes and gives thefirst byteaddress.

o Run-timestoragecanbe subdividetohold thedifferentcomponentsofanexecuting program:

 Department of CSE Page 2 of 27

1. Generatedexecutable code

2. Staticdataobjects

3. Dynamicdata-object-heap

4. Automaticdataobjects-stack

Two areas, Stack and Heap, are at the opposite ends of the remainder of the address space. These

areasare dynamic; their size can change as the program executes. Stack to support call/return policy

forprocedures.Heaptostoredatathatcanoutliveacalltoaprocedure..Theheapisusedtomanageallocateand

deallocatedata.

StaticVersusDynamicStorageAllocation

The layout and allocation of data to memory locations in the run-time environment are key issues

instorage management. The two terms static and dynamic distinguish between compile time and run

time,respectively.Wesay thatastorage-allocation decision is

Static:-if it can be made by the compiler looking only at the text of the program, not at

whattheprogram does when it executes.

Dynamic:-if it can bedecidedonly while theprogram is running.

Compilersusefollowingtwostrategiesfordynamicstorageallocation:

Stack storage. Names local to a procedure are allocated space on a stack.stack supports the

normalcall/returnpolicy for procedures.

Heap storage. Data that may outlive the call to the procedure that created it is usually allocated on

a"heap" of reusable storage.The heap is an area of virtual memory that allows objects or other

dataelementstoobtain storagewhen they are createdandto returnthat storage when theyareinvalidated.

Stackallocationofspace

1 ActivationTrees

2 ActivationRecords

3 CallingSequences

4 Variable-LengthData ontheStack

Each time a procedure is called, space for its local variables is pushed onto a stack, and when

theprocedureterminates, that spaceis popped off the stack.

1 ActivationTrees

Stackallocationisavalidallocationforproceduressinceprocedurecallsarenested

Example:quicksort algorithm

 Department of CSE Page 3 of 27

Themainfunctionhasthreetasks.ItcallsreadArray,setsthesentinels,andthencallsquicksortontheentiredat

aarray.

Procedure activations are nested in time. If an activation of procedure p calls procedure q,

thenthatactivation ofq must end before theactivation of p can end.

Representtheactivationsofproceduresduringthe runningofanentireprogrambya tree,calledan

activation tree. Each node corresponds to one activation, and the root is the activation of the

"main"procedure that initiates execution of the program. At a node for an activation of procedure p,

thechildrencorrespond to activations of theprocedurescalled by this activation of p.

 Department of CSE Page 4 of 27

2 ActivationRecords

a. Procedure calls and returns are usually managed by a run-time stack called the
controlstack.

b. Eachliveactivationhasanactivationrecord(sometimescalledaframe)

c. Theroot ofactivation treeis at thebottomof thestack

d. Thecurrentexecution pathspecifies thecontent ofthestackwith thelast

e. Activationhasrecordinthetopofthestack.

 Department of CSE Page 5 of 27

Figure7.5:Ageneralactivationrecord

An activation record is used to store information about the status of the machine, such as the

valueof the program counter and machine registers, when a procedure call occurs. When control returns

fromthe call, the activation of the calling procedure can be restarted after restoring the values of

relevantregisters and setting the program counter to the point immediately after the call. Data objects

whoselifetimesarecontainedinthatofanactivationcanbeallocatedonthestackalongwithotherinformationass

ociated with the activation.

Anactivationrecordcontainsallthenecessaryinformationrequiredtocallaprocedure.Anactivationrecordmay

contain the following units(depending upon thesourcelanguageused).

Temporaries Storestemporaryandintermediatevaluesofanexpression.

LocalData Storeslocaldataofthecalledprocedure.

MachineStatus StoresmachinestatussuchasRegisters,ProgramCounteretc.,beforetheproce

dureis called.

Control Link Storestheaddressof activationrecordofthecallerprocedure.

AccessLink Storestheinformationof datawhichisoutsidethe local scope.

ActualParameters Storesactualparameters,i.e.,parameterswhich

areusedtosendinputtothecalledprocedure.

 Department of CSE Page 6 of 27

ReturnValue Storesreturnvalues.

3 CallingSequences

Designingcallingsequencesandthelayoutofactivationrecords,thefollowing

1. Valuescommunicatedbetweencallerandcalleearegenerallyplacedatthe

beginningofcallee’sactivationrecord

2. Fixed-length items: are generally placed at the middle. such items typically include the

controllink,the access link, and the machine status fields.

3. Itemswhosesizemay notbe knownearlyenough:areplaced atthe

endofactivationrecord4.Wemustlocatethetop-of-stackpointerjudiciously:

acommonapproachistohave

itpointtothe end offixed lengthfields in theactivation record.

 Department of CSE Page 7 of 27

A register topsp points to the end of the machine-status field in the current top activation

record.This position within the callee's activation record is known to the caller, so the caller can be

maderesponsible for settingtopsp before control is passed to the callee.The calling sequence

anditsdivisionbetween caller and calleeis as follows:

1. Thecallerevaluatestheactualparameters.

The caller stores a return address and the old value of topsp into the callee's activation

record.The caller then increments topsp to the position shown in Fig. 7.7. That is, topsp is moved past

thecaller'slocal dataand temporariesand thecallee'sparameters and status fields.

Thecalleesavestheregistervaluesandotherstatusinformation.Thec

alleeinitializes its local dataand begins execution.

Asuitable,corresponding returnsequenceis:

1. Thecalleeplaces thereturnvalue nexttothe parameters, asin Fig.7.5.

2. Using information in the machine-status field, the callee restores topsp and other

registers,andthen branchestothe returnaddress thatthecaller placedin thestatusfield.

3. Althoughtopsp hasbeen decremented,thecallerknows wherethereturnvalue is,relativeto

 Department of CSE Page 8 of 27

thecurrentvalueoftopsp;thecaller thereforemayusethatvalue.

4. Variable-LengthDataontheStack

The run-time memory-management system must deal frequently with the allocation of space

forobjects the sizes of which are not known at compile time, but which are local to a procedure and

thusmaybeallocatedon the stack.

it ispossible to allocate objects, arrays, or other structures of unknown size on the stack.

Thereason to prefer placingobjects on the stack if possible is that we avoid the expense of

garbagecollecting their space. Note that the stack can be used only for an object if it is local to a

procedure andbecomesinaccessible when the procedure returns.

A common strategy for allocating variable-length arrays (i.e., arrays whose size depends on

thevalue of one or more parameters of the called procedure) is shown in Fig. 7.8. The same scheme

worksfor objects of any type if they are local to the procedure called and have a size that depends on

theparametersofthecall.

Also shown in Fig. 7.8 is the activation record for a procedure q, called by p. The activation record for

qbegins after the arrays of p, and any variable-length arrays of q are located beyond that . Access

tothedataon thestack is through two pointers, topand topsp.

 Department of CSE Page 9 of 27

AccesstoNonLocaldataonthestack

1DataAccessWithoutNestedProcedures2Is

sues WithNested Procedures

3ALanguageWithNestedProcedureDeclarations4N

esting Depth

5 AccessLinks

6 ManipulatingAccessLinks

7 AccessLinksforProcedureParameters8

Displays

Consider how procedures access their data. Especially im-portant is the mechanism for

findingdataused within aprocedurep but that does not belong top

1DataAccessWithoutNestedProcedures

Namesareeither localto theprocedureinquestion oraredeclaredglobally.

1. For global names the address is known statically at compile time providing there is only

onesourcefile.Ifmultiplesourcefiles,thelinker

knows.Ineithercasenoreferencetotheactivationrecordis needed; theaddresses areknow priorto

execution.

2. For names local to the current procedure, the address needed is in the AR at a known-at-

compile-timeconstantoffsetfromthesp.Inthecaseofvariablesize arrays,theconstantoffsetrefersto

apointer to theactual storage.

2IssuesWithNestedProcedures

Access becomes far more complicated when a language allows procedure dec-larations to

benested .The reason is that knowing at compile time thatthe declaration of p is immediately

nestedwithinq doesnottellustherelativepositionsoftheiractivationrecordsatruntime.Infact,sinceeitherp orq

orbothmayberecursive,theremaybeseveralactivationrecordsofp and/orqonthestack.

Finding the declaration that applies to a nonlocal name x in a nested pro-cedure p is a

staticdecision; it can be done by an extension of the static-scope rule for blocks. Suppose x is declared in

theenclosingprocedure q. Findingtherelevantactivationof q fromanactivationof p isadynamicdecision; it

re-quires additional run-time information about activations. One possible solution is to useaccesslinks.

3. ALanguageWithNestedProcedureDeclarations

Invariouslanguageswith nested procedures, one of themostinfluential is ML.

 Department of CSE Page 10 of 27

+1

ML is a functional language, meaning that variables, once declared and initialized, are

notchanged. There are only a few exceptions, such as the array, whose elements can be changed by

specialfunctioncalls.

• Variablesaredefined,andhavetheirunchangeablevaluesinitialized,

val (name)=(expression)

• Functionsaredefinedusingthesyntax:

fun(name)((arguments))= (body)

• Forfunction bodies,uselet-statementsof the form:

let (list of definitions) in (statements) endThe definitions are normally v a l or fun

statements.Thescopeofeachsuchdefinitionconsistsofallfollowingdefinitions,uptothein,andallthestatement

s up to the end. Most importantly, function definitions can be nested. For example, the body ofa

function p can contain a let-statement that includes the definition of another (nested) function

q.Similarly, q can have function definitions within its own body, leading to arbitrarily deep nesting

offunction

4. NestingDepth

Nesting depth is 1 to procedures that are not nested within any other procedure. For example,

allC functions are at nesting depth 1. However, if a procedure p is defined immediately within a

procedureat nesting depthi, then give p the nesting depthi

 Department of CSE Page 11 of 27

5. AccessLinks

A direct implementation of the normal static scope rule for nested functions is obtained

byadding a pointer called the access link to each activation record. If procedure p is nested

immediatelywithin procedure q in the source code, then the access link in any activation of p points to

the mostrecentactivationof q.Note thatthe nestingdepthofqmustbe exactlyonelessthan thenestingdepthof

p. Access links form a chain from the activation record at the top of the stack to a sequence

ofactivationsat progressively lower nesting depths.

Figure 7.11 shows a sequence of stacks that might result from execution of the function sort

ofFig.7.10.InFig.7.11(a),weseethesituationaftersorthascalledreadArray toloadinputintothearray a and

then called quicksort(l, 9) to sort the array. The access link from quicksort(l, 9) points to theactivation

record for sort, not because sort called quicksort but because sort is the most closely

nestedfunctionsurrounding quicksortin theprogram.

seearecursivecalltoquicksort(l,3),

followedbyacalltopartition,whichcallsexchange.Noticethatquicksort(l, 3)'saccess link pointstosort,

forthe same reasonthatquicksort(l, 9)'s does.

6. ManipulatingAccessLinks

Thehardercaseiswhenthecallistoaprocedure-

parameter;inthatcase,theparticularprocedurebeingcalledisnotknownuntilruntime,andthenestingdepthofth

ecalledproceduremay

 Department of CSE Page 12 of 27

differindifferentexecutionsof the call. consider situation when a procedure q callsprocedurep,

explicitly. Therearethreecases:

1. Procedure p isatahighernestingdepththan q. Thenpmustbedefinedimmediatelywithin q,

orthecallby q wouldnotbeatapositionthatiswithinthescopeoftheprocedurename p. Thus,thenestingdepthof

p isexactlyonegreaterthanthatof q, andtheaccesslinkfrom p must lead to q. It is a simple matter for the

calling sequence to include a step that places in theaccesslink forp apointer to theactivation recordof q.

2. The call is recursive, that is, p = q.Then the access link for the new activation record is

thesameas that of theactivation record below it.

3. Thenestingdepthnpofpislessthanthenestingdepthnqofq.Inorderforthecallwithinqtobe inthe

scopeof name p, procedure qmustbe nestedwithin some procedure r,while pisaprocedure defined

immediately within r. The top activation record for r can therefore be found byfollowing the chain of

access links, starting in the activation record for q, for nq — np + 1 hops. Then,theaccess link forp must

go to this activation ofr.

7. AccessLinksforProcedureParameters

Whenaprocedure p ispassedtoanotherprocedure q asaparameter,and q thencallsitsparameter (and

therefore calls p in this activation of q), it is possible that q does not know the context inwhich p appears

in the program. If so, it is impossible for q to know how to set the access link for p. Thesolution to this

is, when procedures are used as parameters, the caller needs to pass, along with the nameof the

procedure-parameter, the proper access link for that parameter. The caller always knows the link,since if

p is passed by procedure r as an actual parameter, then p must be a name accessible to r,

andtherefore,rcandeterminetheaccesslinkforp exactlyasifp werebeingcalledbyrdirectly.

 Department of CSE Page 13 of 27

8. Displays

One problem with the access-link approach to nonlocal data is that if the nesting depth gets large,

wemayhavetofollowlongchainsoflinkstoreachthedataweneed.Amoreefficientimplementationuses an

auxiliary array d, called the display, which consists of one pointer for each nesting depth. Wearrange

that, at all times, d[i] is a pointer to the highest activation record on the stack for any procedureatnesting

depth i. Examples of adisplay areshown in Fig. 7.14.

Inordertomaintainthedisplaycorrectly,weneedtosavepreviousvaluesofdisplayentriesinnewactivati

on records.

 Department of CSE Page 14 of 27

HeapManagement
The heap is the portion of the store that is used for data that lives indefinitely, or until

theprogramexplicitly deletes it.

1 TheMemoryManager

2 TheMemoryHierarchyofaComputer3L

ocality in Programs

4 ReducingFragmentation

5 ManualDeallocationRequests

1 TheMemoryManager

It performstwobasicfunctions:

• Allocation. Whenaprogramrequestsmemoryforavariableorobject,3 thememorymanagerproduces a

chunk of contiguous heap memory of the requested size. If possible, it satisfies an allocationrequest

using free space in the heap; if no chunk of the needed size is available, it seeks to increase

theheapstoragespacebygettingconsecutivebytesofvirtualmemoryfromtheoperatingsystem.Ifspaceisexhau

sted, thememorymanager passesthat informationback to theapplication program.

• Deallocation. The memory manager returns deallocated space to the pool of free space, so it can

reusethe space to satisfy other allocation requests. Memory managers typically do not return memory to

theoperatingsys-tem, even if theprogram's heap usagedrops.

Thus,thememorymanagermustbepreparedtoservice,inanyorder,allo-cationanddeallocation

requests of any size, ranging fromone byte to as large as the program's entire addressspace.

Herearetheproperties wedesireofmemory managers:

• SpaceEfficiency.Amemorymanagershouldminimizethetotalheapspaceneededbyaprogram.Larger

programs to run in afixed virtualaddress space..

• Program Efficiency. A memory manager should make good use of the memory subsystem to

allowprogramsto runfaster.

• Low Overhead. Because memory allocations and deallocations are fre-quent operations in

manyprograms, it is important that these operations be as efficient as possible. That is, we wish to

minimizetheoverhead

2. TheMemoryHierarchyofaComputer

The efficiency of a program is determined not just by the number of instructions executed,

butalso by how long it takes to execute each of these instructions. The time taken to execute an

instructioncanvarysignificantly,sincethetimetakentoaccessdifferentpartsofmemorycanvaryfrom

 Department of CSE Page 15 of 27

nanosecondstomilliseconds.Data-intensiveprogramscanthereforebenefitsignificantlyfromoptimizationsthat

makegood useof thememorysubsystem.

3. LocalityinPrograms

Most programs exhibit a high degree of locality;that is, they spend most of their time executinga

relatively small fraction of the code and touching only a small fraction of the data. We say thataprogram

hastemporal locality if the memory locations it accesses are likely to be accessed again withina short

period of time. We say that a program has spatial locality if memory locations close to

thelocationaccessed arelikely also to beaccessed within a short period oftime.

Programs spend 90% of their time executing 10% of the code. Programs often contain

manyinstructions that are never executed. Programs built with components and libraries use only a

smallfractionofthe provided functionality.

The typicalprogramspendsmostofits timeexecutinginnermostloopsandtight recursivecycles in a

program. By placing the most common instructions and data in the fast-but-small storage,while leaving

the rest in the slow-but-large storage. Average memory-access time of a program can

beloweredsignificantly.

 Department of CSE Page 16 of 27

4. ReducingFragmentation

Tobeginwiththewhole heapisasinglechunkofsize

500KbytesAfterafewallocations anddeallocations,thereareholes

Intheabove picture,it isnot possibletoallocate100Kor 150Keventhoughtotal freememoryis150K

With each deallocation request, the freed chunks of memory are added back to the pool of

freespace.We coalesce contiguous holes into larger holes, as the holes can only get smaller

otherwise.Ifwe are not careful, the memory may end up getting fragmented, consisting of large numbers

of small,noncontiguous holes. It is then possible that no hole is large enough to satisfy a future request,

eventhoughtheremay besufficient aggregate freespace.

Best -FitandNext- FitObject Placement

We reduce fragmentation by controlling how the memory manager places new objects in

theheap. It has been found empirically that a good strategy for minimizing fragmentation for real

lifeprogramsistoallocatetherequestedmemoryinthesmallestavailableholethatislargeenough.This best-fit

algorithmtendstosparethelargeholestosatisfysubsequent,largerrequests.Analternative, called first-fit,

where an object is placed in the first (lowest-address) hole in which it fits,takesless

timetoplaceobjects,but has beenfound inferiortobest-fit in overallperformance.

To implement best-fit placement more efficiently, we can separate free space into bins, according

totheirsizes.Binning makes it easy to find thebest-fit chunk.

Man ag in g and CoalescingFreeSpace

When anobject is deallocated manually, the memory manager must make its chunk free, so itcan

be allocated again. In some circumstances, it may also be possible to combine (coalesce) that chunkwith

adjacent chunks of the heap, to form a larger chunk. There is an advantage to doing so, since wecan

always use a large chunk to do the work of small chunks of equal total size, but many small

chunkscannothold onelargeobject, as thecombinedchunk could.

Automatic garbage collection can eliminate fragmentation altogether if it moves all the

allocatedobjectsto contiguous storage.

 Department of CSE Page 17 of 27

5. ManualDeallocationRequests

Inmanualmemorymanagement,wheretheprogrammermustexplicitlyarrangeforthedeallocation of

data, as in C and C + + . Ideally, any storage that will no longer be accessed should bedeleted.

ProblemswithManualDeallocation

1. Memoryleaks‰

Failingtodeletedatathatcannotbereferenced‰Impor

tantinlongrunning ornonstopprograms „

2. Danglingpointerdereferencing‰R

eferencingdeleteddata„

Bothareseriousand hardtodebug

GarbageCollection„

1. Reclamationofchunksof storageholding objectsthat canno longerbeaccessedby aprogram„

2. GCshouldbeableto determinetypesofobjects‰

Then,sizeandpointerfieldsofobjects canbedeterminedbythe GC‰

Languagesinwhich typesofobjects canbedeterminedatcompiletimeorrun-time aretype

safe„

Javaistypesafe„

Cand C++arenottypesafebecausethey permittypecasting,which

createsnewpointers

„

Thus,anymemorylocationcanbe(theoretically)accessedatanytimeandhencecannot

beconsidered inaccessible

 Department of CSE Page 18 of 27

CodeGeneration

Ittakesasinputtheintermediaterepresentation(IR)producedbythe front endofthecompiler,along

with relevant symbol table information, and produces as output a semantically equivalent

targetprogram

Themostimportantcriterionforacodegenerator is thatit producecorrectcode.

Thefollowingissuearisesduringthecodegenerationphase:

1InputtotheCodeGenerator2T

heTarget Program

3 InstructionSelection

4 RegisterAllocation

5.EvaluationOrder

Inputtocodegenerator

Theinputtocodegeneratoristheintermediatecodegeneratedbythefrontend,alongwithinformation in the

symbol table that determines the run-time addresses of the data-objects denotedby the names in the

intermediate representation. Intermediate codes may be represented mostly inquadruples, triples,
indirect triples, Postfix notation, syntax trees, DAG’s, etc. The code generationphase just proceeds

on an assumption that the input are free from all of syntactic and state semanticerrors, the necessary

type checking has taken place and the type-conversion operators have

beeninsertedwherevernecessary

Targetprogram

Thetargetprogramistheoutputofthecodegenerator.Theoutputmaybeabsolutemachinelanguage

,relocatablemachinelanguage,assemblylanguage.

 Absolutemachinelanguageas

outputhasadvantagesthatitcanbeplacedinafixedmemorylocationandcanbeimmediatelyex

ecuted.

 Relocatable machine language as an output allows subprograms and subroutines
tobe compiled separately. Relocatable object modules can be linked together and

loadedbylinkingloader.Butthereisaddedexpenseoflinkingandloading.

 Assembly language as output makes the code generation easier. We can

generatesymbolic instructions and use macro-facilities of assembler in generating code.

And weneedanadditionalassemblystepafter codegeneration.

.

Instructionselection

 Department of CSE Page 19 of 27

Selectingthebestinstructionswillimprovetheefficiencyoftheprogram.Itincludestheinstructionsthat

should be complete and uniform. Instruction speeds and machine idioms also plays a major

rolewhen efficiency is considered. But if we do not care about the efficiency of the target program

theninstructionselection is straight-forward.

Forexample,three-addressstatements wouldbetranslated intothelattercodesequenceasshownbelow:

Herethe fourth statementis redundantas thevalue of theP isloaded againin thatstatementthat justhasbeen

stored in the previous statement. It leads to an inefficient code sequence. A given

intermediaterepresentation can be translated into many code sequences, with significant cost differences

between thedifferent implementations. A prior knowledge of instruction cost is needed in order to

design goodsequences,butaccuratecost information is difficultto predict.

Registerallocationissues

Useofregistersmakethe computationsfasterin

comparisontothatofmemory,soefficientutilizationofregisters is important.Theuseofregisters

aresubdivided into two subproblems:

1. During Register allocation – we select only those set of variables that will reside in

theregistersat each point inthe program.

2. Duringasubsequent Registerassignment phase,thespecificregisteris

pickedtoaccessthevariable.

As the number of variables increases, the optimal assignment of registers to variables

becomesdifficult. Mathematically, this problem becomes NP-complete. Certain machine

requires registerpairsconsist of an evenand next odd-numberedregister. For example

Ma, b

Thesetypesofmultiplicativeinstructioninvolveregisterpairswherethemultiplicandisan

evenregisterand b, themultiplier is theodd register of theeven/odd register pair.

Evaluationorder –

The code generator decides the order in which the instruction will be executed. The order

ofcomputationsaffectsthe efficiencyofthetarget code.Amongmanycomputationalorders,some

willrequire only fewer registers to hold the intermediate results. However, picking the best order in

thegeneralcaseis a difficultNP-complete problem.

Approachestocodegenerationissues:

Codegeneratormustalwaysgeneratethe correctcode.Itis

 essentialbecauseofthenumberofsp

ecialcasesthatacode generatormightface.Someofthe designgoalsofcodegenerator are:

P:=Q+RS:=

P+TMOV

Q, R0ADD

R, R0MOV

R0, PMOV

P,

R0ADDT,R

0

MOVR0, S

 Department of CSE Page 20 of 27

 Correct

 Easilymaintainable

 Testable

 Efficient

ThetargetLanguage

1ASimpleTargetMachineModel2P

rogramand Instruction Costs

ASimpleTargetMachineModel

opsource,destination

Where,opisusedasanop-codeandsourceanddestinationareusedasadatafield.

o It has the following op-

codes:ADD(addsourcetodestinat

ion)

SUB (subtract source from

destination)MOV(movesource

todestination)

o Thesourceanddestinationof

aninstructioncanbespecifiedbythecombinationofregistersand memorylocationwith

addressmodes.

MODE FORM ADDRESS EXAMPLE ADDED
 COST

Absolute M M AddR0, R1 1

Register R R Addtemp, R1 0

indexed
c(R) C+contents(R) ADD100(R2),R1 1

indirectregister
*R contents(R) ADD*100 0

indirectindexed *c(R)
contents(c+
contents(R))

(R2),R1 1

literal #c c ADD#3,R1 1

o Here,cost1meansthatitoccupiesonlyonewordofmemory.

o Eachinstructionhas acost of1plusaddedcostsforthesourceanddestination.

o Instruction cost=1 +costisusedfor sourceanddestinationmode.

 Department of CSE Page 21 of 27

2 ProgramandInstructionCosts

Cost of an instruction to be one plus the costs associated with the addressing modes of

theoperands . This cost corresponds to the length in words of the instruction. Addressing modes

involvingregisters have zero additional cost, while those involving a memory location or constant in

them have anadditionalcost of one, becausesuch operands havetobe stored in thewords following

theinstruction.

Examples:

• TheinstructionLDRO,RlcopiesthecontentsofregisterRlintoregisterRO.Thisinstructionhasacost of

onebecauseno additionalmemory words arerequired.

• The instruction LD RO, Mloads the contentsof memory location Minto register RO.T h e

costistwosincethe address ofmemory locationM is in theword followingtheinstruction.

• The instruction LDR l , *100(R2)loads into register Rl the value given by contents(contents(100

+contents(K2))).Thecost isthreebecause the constant 100 is stored in the word following theinstruction.

Example:

1. Moveregistertomemory R0→M
MOVR0, M

cost=1+1+1 (sinceaddressofmemorylocationM isinword followingtheinstruction)

2. Indirectindexedmode:MOV*4(R0),M

cost = 1+1+1(since one word for memory location M, one
wordresultof*4(R0) and oneforinstruction)

3. LiteralMode:

MOV#1, R0
cost=1+1+1 =3(oneword forconstant1 and oneforinstruction)

Addressinthetargetcode

Theinformation whichrequired duringanexecutionofaprocedureis keptin ablock
ofstoragecalledanactivationrecord. Theactivationrecordincludes storage fornameslocal totheprocedure.
Wecandescribeaddressinthetargetcodeusingthefollowingways:

1. Staticallocation

2. Stackallocation

Instaticallocation,theposition ofanactivationrecordisfixedinmemoryat compiletime.

.
Inthestackallocation,foreachexecutionofaprocedureanewactivationrecord ispushedontothestack.
Whenthe activation ends then therecord ispopped.

For the run-time allocation and deallocation of activation records the following three-
addressstatementsareassociated:

 Department of CSE Page 22 of 27

1. Call

2. Return

3. Halt

4. Action,aplaceholderforotherstatements

Assumethattherun-timememoryisdividedintoareasfor:

1. Code

2. Staticdata

3. Stack

Staticallocation:

1. Implementationofcallstatement:

Thefollowingcodeisneeded toimplement staticallocation:

MOV#here +20, callee.static_area /*itsavesreturnaddress*/</p>

GOTOcallee.code_area /*Ittransferscontroltothetargetcodeforthecalledprocedure*/

Where,

callee.static_areashowstheaddressoftheactivationrecord.

callee.code_areashows theaddressofthefirstinstructionforcalledprocedure.

#here+20literalareusedtoreturnaddressofthe instructionfollowingGOTO.

2. Implementationofreturnstatement:

Thefollowingcodeisneededtoimplementreturn

fromprocedurecallee:GOTO* callee.static_area

Itisusedtotransferthecontroltotheaddressthatissavedatthebeginningoftheactivationrecord.

3. Implementationofactionstatement:

TheACTIONinstructionisusedtoimplementactionstatement.

4. Implementationofhaltstatement:

TheHALTstatementis thefinalinstruction thatisused toreturnthe controltotheoperatingsystem.

 Department of CSE Page 23 of 27

Stackallocation

Usingtherelativeaddress,staticallocationcanbecomestackallocationfor

storageinactivationrecords.

Instackallocation,registerisusedtostorethepositionofactivationrecord

sowordsinactivationrecords canbeaccessed asoffsets fromthevalue inthis register.

Thefollowingcodeis neededtoimplementstackallocation:

1. Initializationofstack:

MOV#stackstart , SP /*initializes

stack*/HALT /*terminateexecution*/

2. ImplementationofCallstatement:

ADD #caller.recordsize, SP/* increment stack pointer

*/MOV#here+16, *SP

 /*Savereturnaddress*/G

OTOcallee.code_area

Where,

caller.recordsizeis thesizeoftheactivationrecord

#here+ 16is theaddressof theinstruction followingtheGOTO

3. ImplementationofReturnstatement:

GOTO*0(SP)/*returntothecaller*/

SUB#caller.recordsize,SP /*decrementSP andrestoreto previous value*/

BasicblocksandFlowgraphs

A graph representation of three-address statements, called a flow graph, is useful

forunderstanding code-generation algorithms, even if the graph is not explicitly constructed

by acode-generation algorithm. Nodes in the flow graph represent computations, and the

edgesrepresent the flow of control. Flow graph of a program can be used as a vehicle to

collectinformation about the intermediate program. Some register-assignment algorithms use

flowgraphsto find theinnerloopswhere aprogram is expectedto spend most ofits time.

Basicblockcontains asequenceof statement.The flowofcontrol entersatthe

beginningofthestatementand leaveattheend without anyhalt (except maybethe last instructionofthe

block).

Thefollowing sequence of threeaddressstatements forms abasicblock:

 Department of CSE Page 24 of 27

1.t1:=x * x

2. t2:= x *

y3.t3:= 2 *

t24.t4:=t1+t3

5. t5:= y *

y6.t6:=t4+t5

Basicblockconstruction:

Algorithm:Partitionintobasicblocks

Input:Itcontainsthesequenceofthree addressstatements

Output:itcontains alistofbasic blockswith eachthreeaddressstatementin exactlyoneblock

Method:Firstidentifytheleaderinthecode.The rules forfindingleaders areasfollows:

o Thefirst statementis aleader.

o StatementLis aleader if thereisan conditionalorunconditionalgoto statementlike: if. goto

L orgoto L
o InstructionLis aleader ifit immediatelyfollowsagotoor conditionalgoto statementlike:ifgoto

Bor goto B

For each leader, its basic block consists of the leader and all statement up to. It doesn't include the

nextleaderor end ofthe program.

Considerthefollowingsourcecodefordot product oftwo vectorsaand boflength 10:

begin

prod

:=0;i:=1;

dobegin

prod :=prod+ a[i] *

b[i];i:=i+1;

end

while i <=

10end

Thethree addresscodefor theabovesourceprogramis givenbelow:

B1

(1)prod:=0(

2)i :=1

 Department of CSE Page 25 of 27

B2

(3) t1 := 4*

i(4)t2:=a[t1]

(5) t3 := 4*

i(6)t4:=b[t3]

(7)t5 :=t2*t4

(8) t6:=prod+t5

(9) prod :=

t6(10) t7:=i+1

(11) i :=t7

(12) ifi<=10 goto(3)

Basic block B1 contains the statement (1) to
(2)BasicblockB2containsthestatement (3)to(12)

FlowGraph

Flowgraphisadirected graph.Itcontainsthe flowofcontrolinformationforthesetofbasic block.

Acontrolflowgraphisusedto depictthathowtheprogramcontrol isbeingparsedamongtheblocks.Itisuseful in

theloop optimization.Flow graphfor the vectordot product isgiven as follows:

1. BlockB1 isthe initialnode. BlockB2 immediatelyfollows B1, sofrom B2to B1thereisanedge.

2. Thetarget ofjump fromlast statementofB1is thefirst statementB2, sofrom B1to B2thereisan

edge.

 Department of CSE Page 26 of 27

ASimpleCodegeneration.

Codegeneratoris usedtoproducethetargetcodeforthree-addressstatements.

Itusesregisterstostorethe operands of thethreeaddress statement.

Considerthethree addressstatementx:=y+z.Itcanhavethe followingsequenceof codes:

MOVx, R0

ADDy, R0

RegisterandAddressDescriptors:

o Aregisterdescriptorcontainsthetrackof whatiscurrentlyineachregister.

Theregisterdescriptorsshow that allthe registers areinitially empty.

o Anaddressdescriptorisusedtostorethe locationwherecurrent valueofthename canbefoundat

runtime.

Acode-generationalgorithm:

The algorithm takes a sequence of three-address statements as input. For each three address statement

oftheform a:= b opcperform thevarious actions. Theseareas follows:

1. Invokeafunction getregtofind outthe locationLwherethe result ofcomputationb opc

shouldbestored.

2. Consulttheaddress descriptionforytodeterminey'.Ifthevalueof ycurrently inmemory andregister

both then prefer the register y' . If the value of y is not already in L then generate

theinstructionMOV y' , Lto placeacopy ofyin L.

3. Generate the instruction OP z' , L where z' is used to show the current location of z. if z is

inboth then prefer a register to a memory location. Update the address descriptor of x to

indicatethat x is in location L. If x is in L then update its descriptor and remove x from all

otherdescriptor.

4. If the current value of y or z have no next uses or not live on exit from the block or in

registerthenaltertheregister descriptortoindicatethat afterexecutionofx

:=yopzthoseregisterwillnolongercontain y orz.

GeneratingCodeforAssignment Statements:

Theassignmentstatement d:=(a-b)+(a-c)+(a-c)canbetranslatedinto the following

sequenceofthreeaddresscode:

t:=a-b

u:= a-

cv:=t+u

 Department of CSE Page 27 of 27

d:=v+u

Codesequenceforthe exampleis as follows:

Statement CodeGenerated Registerdescriptor

Register empty

Addressdescriptor

t:=a-b MOVa,R0

SUBb, R0

R0contains t t in R0

u:= a-c MOVa,R1

SUBc, R1

R0 contains

tR1containsu

t in

R0uin

R1

v:= t +u ADDR1, R0 R0 contains

vR1containsu

u in

R1vin

R1

d:= v +u ADD R1,

R0MOVR0,

d

R0contains d d in R0

dinR0and

memory

	UNIT–IV
	StorageOrganization
	StaticVersusDynamicStorageAllocation

	Stackallocationofspace
	1 ActivationTrees
	2 ActivationRecords

	3 CallingSequences
	4. Variable-LengthDataontheStack
	AccesstoNonLocaldataonthestack
	3. ALanguageWithNestedProcedureDeclarations
	4. NestingDepth
	5. AccessLinks
	6. ManipulatingAccessLinks
	7. AccessLinksforProcedureParameters
	8. Displays
	It performstwobasicfunctions:
	2. TheMemoryHierarchyofaComputer
	3. LocalityinPrograms
	4. ReducingFragmentation
	Man ag in g and CoalescingFreeSpace
	5. ManualDeallocationRequests
	ProblemswithManualDeallocation
	GarbageCollection„

	CodeGeneration
	Thefollowingissuearisesduringthecodegenerationphase:
	Inputtocodegenerator
	Theinputtocodegeneratoristheintermediatecodegeneratedbythefrontend,alongwithinformation in the symbol table that determines the run-time addresses of the data-objects denotedby the names in the intermediate representation. Intermediate codes may be re...
	Thetargetprogramistheoutputofthecodegenerator.Theoutputmaybeabsolutemachinelanguage,relocatablemachinelanguage,assemblylanguage.
	 Relocatable machine language as an output allows subprograms and subroutines tobe compiled separately. Relocatable object modules can be linked together and loadedbylinkingloader.Butthereisaddedexpenseoflinkingandloading.
	.
	Instructionselection
	Registerallocationissues
	Evaluationorder –
	Approachestocodegenerationissues:
	2 ProgramandInstructionCosts

	Addressinthetargetcode
	Staticallocation:
	Stackallocation
	B1
	B2
	ASimpleCodegeneration.

